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Methods Supplement 

Mathematical Description 

Inputs to GISPA 

1. Separate, genomewide, normalized data sets for each data type of interest (for transcript level 
expression or probe level GE data, transcript compatibility files will be needed) 

2. Specification of the profile of interest that is based upon the input data types. The 
determination of each profile as biologically plausible is at the discretion of the user and may 
be based on a combination of factors, including the following guiding principles: i) promoter 
hypermethylation is consistent with gene silencing; ii) promoter hypomethylation is consistent 
with GE; iii) copy gain is consistent with over-expression and iv) copy loss is consistent with 
under-expression.  

3. Specification of a class to characterize against (at least) two other classes.   

Statistics 

Within-Feature Profile Statistic (WFPS).  Within the context of three single-sample classes, X, Y1 
and Y2, in which X is to be characterized relative to both Y1 and Y2 classes, in terms of some single 
feature profile of increased values for some data type, we define a within-feature (increased value) 
profile statistic (WFPS) for each gth.  gene as follows:  

 
𝑊𝐹𝑃𝑆𝑔+(𝑥, 𝑦1, 𝑦2) = 𝛿𝑔

+(𝑥, 𝑦1, 𝑦2) = 𝑓1(𝑥, 𝑦1, 𝑦2) + 𝑓2 (𝑥, 𝑦1, 𝑦2) = |
(𝑥 − 𝑦1)

(𝑥 − 𝑦2)
− 1| +

𝑦1𝑦2

𝑥2
 

(Eq.1) 

 

where 𝑊𝐹𝑃𝑆𝑔+(𝑥, 𝑦1, 𝑦2): ℝ+ → ℝ+  such that for y1=y2, lim𝑥→∞ 𝑊𝐹𝑃𝑆𝑔+(𝑥, 𝑦1, 𝑦2) = 0, and thus low 

values of our WFPSg+ are desirable.  The first term (ratio of differences of each comparison with x) 
forces the comparison samples to be similar in feature values to reduce the potential for ambiguities 
that may arise.  The second term penalizes genes whose feature values for the comparison samples 
are close to the sample of interest, and in turn, rewards genes whose magnitude of difference 
between the sample of interest and comparison samples is large.  Alternatively, if interest lies in 
characterizing X with respect to a profile defined by decreased feature values, we define a within-
feature (decreased value) profile statistic by taking the inverse of the penalty as indicated below, in 
which case, similar to our WFPS, low values are also desirable:  
 

𝑊𝐹𝑃𝑆𝑔−(𝑥, 𝑦1, 𝑦2) = 𝛿𝑔
−(𝑥, 𝑦1, 𝑦2) = 𝑓1(𝑥, 𝑦1, 𝑦2) + 𝑓2

−1 (𝑥, 𝑦1, 𝑦2) 

For a general case of M (single-sample) classes, in which the class X is to be characterized against 
the M-1 classes based on a single feature profile of increased values, we have the following 
generalized WFPS within a gth. gene:  
  
 

𝑊𝐹𝑃𝑆𝑔+(𝑥, 𝑦1 , … , 𝑦𝑀−1) = 𝛿𝑔
+ = (

𝑀 − 1

2
)

−1

∑ 𝑓1(𝑥, 𝑦𝑖 , 𝑦𝑗) + 𝑓2 (𝑥, 𝑦𝑖 , 𝑦𝑗)

𝑀−1

𝑖<𝑗=1

 
 

(Eq. 2) 

 

Similarly, a generalized form for the WFPSg- is defined by taking the inverse of the second term, as in 
the three class case.  The above statistic is readily able to be applied to many settings, including the 
defining of gene sets with similar profiles as characteristic of one subtype versus all other subtypes, 
or time course data to define changes specific to a single time point compared to all other time points.  
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In the case of cell line or mouse data, one may average technical replicates to form a composite 
value for each data type within each gene.  In the case of patient data, one may average over 
samples within each class for very few samples, or form an average filter statistic based on all 
combinations formed among patient samples.   

Between-Genes, Within-Feature Profile Statistic (BGWFPS).  To obtain a measure of the relative, 
among genes, within-feature profile, we construct an empirical cumulative distribution function (ecdf) 
corresponding to the WFPS, and define a between-gene, within-feature profile statistic (BGWFPS) 
by: 

 𝐵𝐺𝑊𝐹𝑃𝑆(𝑤𝑓𝑝𝑠) = 𝐹(𝑤𝑓𝑝𝑠) = 𝑃𝑟(𝑊𝐹𝑃𝑆 ≤ 𝑤𝑓𝑝𝑠) (Eq. 3) 

such that 𝐵𝐺𝑊𝐹𝑃𝑆: ℝ+ → ⌈0,1⌉ for realized values of the WFPS, denoted by wfps.  In this case, we 
assume the existence of a latent construct defined by the genes whose WFPS optimally 
characterizes a single class from other comparison classes.  Thus, conditional on each class sample, 
we view the genome-wide constructed WFPS’s as forming a distribution with error in estimating the 
true underlying latent construct from which we are able to describe genes selected as characteristic 
of some class of interest. The BGWFPS, as an ecdf, defines the percentiles corresponding to 
genome-wide WFPS values, such that for a given gene, for example, BGWFPS(wfps=10)=0.20 is 
interpreted as 20% of the WFPS’s among all genes fall at or below a value of 10.  The BGWFPS 
creates a standardization among the WFPS values such that regardless of feature, the range will be 
the same between 0 and 1, which is an important consideration for the between feature profile 
analyses.  In this case, similar to the WFPS, and because of the monotonically increasing property of 
cdf’s, low BGWFPS values are also desirable.  

Between-Features Profile Statistic (BFPS).  We construct a summary statistic of between feature 
profiles by summing the BGWFPS among the features. For example, if interest is in characterizing a 
class with the two feature profile of decreased values in feature 1 (F1) and increased values in 
feature 2 (F2), we form a between-feature profile statistic as below:  

 𝐵𝐹1𝐹2𝑃𝑆𝑔
−+ = 𝐵𝐺𝑊𝐹1𝑃𝑆𝑔

− + 𝐵𝐺𝑊𝐹2𝑃𝑆𝑔
+ (Eq. 4) 

Similar to our WFPS and BGWFPS, low values of this statistic are also desirable.  
 
Gene Set Selection.  We apply a multiple change point model (cpm) to successive differences in  

– 𝑙𝑜𝑔10 transformed WFPS’s in the case of a single feature profile or – 𝑙𝑜𝑔10 transformed BFPS in the 
case of two or more feature-defined profiles, using a variance-based binary segmentation method (1), 
and implemented by the Bioconductor package, “change point” (2).  The application of a multiple cpm 
results in several gene sets of similar profiles based on our statistics that are ranked according to the 
level of support for the a priori profile such that the gene set defined by the right most tail of the 
distribution (defined by change point1) has the most support, and so on, downward with increasing 
change points. The number of gene sets identified varies according to the empirical distributions for 
the profile of interest.  For implementation, we have allowed up to the maximum number of change 
points to be specified, where possible, and defined an empty set for the case in which a change point 
is not able to be identified. For details on the implementation of a multiple change point model that 
includes diagnostics to guide the selection on the number of change points for a given profile, see our 
R package, GISPA-NGS (https://github.com/BhaktiDwivedi/GISPA.NGS, available for download.   

Prominent Feature.  Within each gene, we examine the proportionate contribution of each feature to 
the BFPS.  Since small values of our BFPS are desirable, we require small values to be associated 
with a larger proportion of this statistic.  To achieve this inverse relation, we define the following: 

https://github.com/BhaktiDwivedi/GISPA.NGS
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𝑝𝑔

𝐹1 =
(𝐵𝐺𝑊𝐹1𝑃𝑆𝑔

−)
−1

(𝐵𝐺𝑊𝐹1𝑃𝑆𝑔
−)

−1
+(𝐵𝐺𝑊𝐹2𝑃𝑆𝑔

+)
−1; 𝑝𝑔

𝐹2 = 1 − 𝑝𝑔
𝐹1 

(Eq. 5) 

Using these proportions, a prominent feature (if it exists) may be defined as that feature which is 
associated with the maximum proportion.  For example, if the summed percentile is 1.10 based on 
two features, feature 1 percentile=0.90 and feature 2 percentile=0.20, then the percent contribution 
from feature 1 is 18% and that of feature 2 is 82%, and thus feature 2 is the defined prominent feature 
driving the BFPS. 
 
Transcript Level Results.  When forming a combined data set, a transcript incompatibility may occur 
that is considered.  For example, it may be the case that for a given gene, a CpG site does not 
correspond to a transcript in the microarray GE array data.  In such cases, we filter the combined 
data to include compatible combinations of features. 
   
Gene Level Results.  The variable number of units (e.g., probes, transcripts, CpG sites) representing 
a single gene may create an issue such that genes defined by several units are likely to be selected 
simply based on their larger number of units representation.  For this reason, we implement a ‘carry 
one forward’ approach that selects the unit associated with the smallest WFPS for a single-feature 
profile to carry forward in subsequent analysis, thus producing gene level results.  In the case of a 
multi-feature profile, we select the combination of units (e.g., variant and CpG site) that is associated 
with the smallest BFPS to carry forward for a single gene, and the BGWFPS is updated based on the 
gene level units selected in subsequent analysis.  While this is a simple approach, another is to apply 
GISPA (Fig. 1) to all units defined for a gene, such as all CpG sites within a gene, and identify the set 
of CpG sites based on change point 1 results to ‘move forward’, and update GISPA results using 
these selected sites to represent a single gene.  The same may be done for all possible combinations 
of say, CpG methylation sites, CN segments and GE data, within each gene.   

Gene Set Significance.  We assess the significance of gene sets by comparing our data results 
through randomly assigning genes to sets (i.e. ‘row randomization’) based on the following algorithm. 

1. Randomly assign genes to each set, the size of which is based on our data results, and apply 
the GISPA method to this randomized dataset to obtain a mean between-feature profile 
statistic (BFPS; Eq. 4) for each gene set.   

2. Repeat step 1 for 1,000 gene randomizations and calculate a mean BFPS for each gene set.     
3. Estimate a monte-carlo p-value by the proportion of times that the mean BFPS based on the 

randomized data is greater than the mean BFPS based on our data results for each gene set.     

Once statistically significant gene sets are defined based on the above algorithm, the significance of 
individual genes in characterizing a class within a set may be further examined by randomly assigning 
classes within each gene.  This permutation approach has been previously applied for use with single 
sample classes and shown to produce consistent results in such cases (3,4).       

SISPA Profile Score.  We demonstrate the calculation of a SISPA profile score based on p genes 
with the profile of increased GE (feature 1) with decreased methylation (feature 2) from n samples.  

Let 𝑧𝑔𝑗
1  denote feature 1 GE values and 𝑧𝑔𝑗

2 , feature 2 methylation beta values for a gth. gene and jth. 

sample, such that 𝐳𝑔
1 = (𝑧𝑔1

1 , … , 𝑧𝑔𝑛
1 ) and  𝑧𝑔

2 = (𝑧𝑔1
2 , … , 𝑧𝑔𝑛

2 ) each have mean zero and variance one 

across all n samples within a gene.  A profile score for feature 1 within a jth. sample is defined by:   
  
 

𝑧𝑗 
1 =

1

√𝑝
∑ 𝑧𝑔𝑗

1

𝑝

𝑔=1

 

 
(Eq.6) 
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such that the variance of 𝑧+𝑗
1  is one within each sample. A profile score is similarly defined for feature 

2 within a jth. sample and denoted by 𝑧𝑗
2 .  A composite, between features 1 and 2 profile score in the 

context of increased GE with decreased methylation score within a jth. sample is defined by 𝑧𝑗
+ − =

(𝑧𝑗
1 − 𝑧𝑗

2).  A multiple change point model is then applied to this (-log10 transformed) composite score 

to define samples with and without profile activity.    
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Methods Supplement 

Data Collection, Preprocessing, Normalization, Transformations 

The microarray datasets have been deposited in NCBI’s Gene Expression Omnibus (GSE68258 for 
SNP-CN; GSE68259 for methylation). The RNA-Seq data has been deposited in NCBI’s Sequence 
Read Archive under Bioproject ID SRP057322. 
 
Methylation.  CpG island methylation data was generated based on the Illumina Infinium Human 
Methylation 450K Beadchip and run in duplicate for each set of three cell lines.  Intensities from both 
runs, among all three cell lines, were processed for CpG site and sample quality checks, and 
normalized using the bioconductor packages, ‘lumi’ (5) and ‘methylumi’ (6).  Data preprocessing 
included, color balance adjustment, sample quality assessment based on CpG intensity, background 
level correction, and data normalization used simple scaling normalization.  A mean beta value was 
obtained between the two runs within each cell line.  Prior to analysis, CpG sites with a detection p-
value greater than 0.0001 in at least 50% of the samples were removed.  
 
SNP-CN.  Copy number (CN) data was generated based on the Illumina Omni1 Quad SNP-CN Array 
on each cell line and processed using in Illumina Genome Studio.  Segmentation was performed on 
the CN data using Partek software (v6.6, Partek Inc.) in which a segment is defined according to the 
following criteria:  1) neighboring regions have significant (p < 0.001) mean intensity differences; 2) 
breakpoints are chosen to provide optimal statistical significance and 3) detected regions contain at 
least 10 SNPs.  HapMaP samples were used for assessment of ‘normal’ CN.  CN segments were 
further defined as either focal or large-scale, according to whether the segment’s chromosome arm 
fraction was less than or greater than or equal to 2%, respectively.  The threshold of 2% 
corresponded to approximately the 95th percentile among chromosome arm fractions within each cell 
line. The grouping of CN segments in this way allows for differential variability in relation to segment 
size, and has been similarly applied to CN data (7).  A segment was categorized according to its 
mean CN as follows:  homozygous (CN < 0.7), heterozygous (0.7 <= CN <= 1.7), normal (1.7 < CN 
<= 2.3) or amplified (> 2.3).  Similar thresholds have been applied to MM CN data (8).  Prior to 
analysis, segments were removed if the call (e.g., gain, loss, no change) was not specific to any one 
of the three cell lines. No segments were identified with a copy gain or loss in two cell lines that was 
not present in the third.  An inferred gene CN change is based on the segment in which the gene was 
included, either in total or part.  
 
RNA-Seq.  Illumina TruSeq RNA protocols were used to generate RNA-Seq libraries that were 
sequenced using the Illumina HiSeq2000 to obtain 100bp paired-end reads. After performing sample 
QC on raw FASTQ files, determining any necessary trimming that may be required using FASTQC 
and applying some additional QC, files were aligned to Human Reference Genome hg19 (GRCh37) 
using Bowtie2 (9) and Tophat2 (10). DESeq (11), Varscan2 (7) , and ANNOVAR (12) was used to 
obtain RNA-Seq derived GE and variant data, and RefSeq annotation of coding variants, respectively. 
Variants located in exon, splicing site, upstream/downstream, or 5’/3 UTR regions that were 
associated with a non-synonymous change were included. Variants present in dbSNP137 were 
removed unless the same variant was also present in COSMIC67. Variant calls were made based on 
a minimum read depth of eight with at least two supporting reads at a position.  Variant calls were 
used in the analysis by defining the proportion of reads supporting a variant among the total number 
of reads. The GE analysis was done using DESeq normalization at gene-level with Cufflinks/Cuffdiff 
(13). 
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SUPPLEMENTAL TABLES 

MM_expcnv.xlsx

 

Table 1.  GISPA selected (change point1) genes that satisfy the (two-feature) profile of decreased 

copy number with decreased RNA-Seq GE, specific to KMS11, MM1s and RPMI8266 cell lines. 

MM_expvar.xlsx

 

Table 2.  GISPA selected (change point 1) genes that satisfy the (two-feature) profile of RNA-Seq 

coding variants with increased RNA-Seq gene expression, specific to KMS11, MM1s and RPMI8266 

cell lines. 

MM_metvar.xlsx

 

Table 3. GISPA selected (change point 1) genes that satisfy the (two-feature) profile of RNA-Seq 

coding variants with increased CpG island methylation, specific to KMS11, MM1s and RPMI8266 cell 

lines. 

MM_expmetcnv.xlsx

 

Table 4. GISPA selected (change point 1) genes that satisfy the (three-feature)  profiles combining 

RNA-Seq gene expression, CpG island methylation, and copy number combination of changes 

(increased vs. decreased), specific to KMS11, MM1s and RPMI8266 cell lines. 

MM_mirnamerger.xls
x

 

Table 5. miRNAs predicted or known to target the majority of GISPA selected (change point 1) gene 

set results that satisfy the profile of decreased RNA-Seq gene expression with increased CpG island 

methylation and decreased copy number, specific to KMS11, MM1s and RPMI8226 cell lines based 

on mirnamerger (http://mirnamerger.org/).    

 

  

http://mirnamerger.org/
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SUPPLEMENTAL FIGURES 

 

 
 
Supplementary Fig.1.  GISPA identifies known molecular features characteristic of multiple myeloma 
cell lines.  Plots show transformed (-log10) between-feature profile statistic (BFPS; see Fig. 1) on the 
y-axis and gene index on the x-axis. The first three change points (cpt) are plotted as horizontal lines 
with cpt1 in red and cpt2 and 3 in green. A) KMS11 high GE shows FGFR3 (red dot) falling above 
cpt3. The ‘extreme cases’ of genes expressed in KMS11 but with zero GE values for both RPMI and 
MM1s cell lines are defined by the first two change points. B) KMS11 increased GE excluding genes 
with zero GE values for both MM1s and RPMI: FGFR3 falls above in cpt2.  C) KMS11 decreased 
copy number: TP53 is selected in cpt1 as part of a deletion specific to KMS11.   
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Supplementary Fig. 2. Two feature GISPA identifies MM1s and RPMI8226 selected genes with 
decreased gene expression (GE) and decreased copy number (CN).   Change point 1 (cpt1) gene set 
results that satisfy the profile of decreased GE with decreased CN by CN segment as focal (F) or 
large=scale (LS) according to whether the segment’s chromosome arm fraction was less than or 
greater than or equal to 2%, respectively (F1=focal in cpt1l; LS1=Large-Scale in cpt1) are displayed 
by cell line. Genes are sorted from the smallest to largest between-feature profile statistic. Left: 
Between-cell line differences.  Within each data type: GE (in orange) and CN change (in blue), a 
stacked bar denoting the percent contribution to the total change from each cell line is displayed 
along a color gradient from darkest (KMS11) to medium (MM1s) to lightest (RPMI) shades.  Among all 
genes selected, the percent contribution to total changes in each feature is the smallest for both GE 
and CN for the selected cell line. Right: Between-feature Differences. The percent contribution from 
each feature to the profile is displayed as a stacked bar.  Among the MM1s selected genes, CYP2D6, 
CDKN2B, VSIG10, TULP4, and NUDCD1 show CN changes as the prominent feature driving the 
profile, with the remaining showing GE.  Among the RPMI selected genes, SLC25A18 shows CN, 
while NRG3 shows both CN and GE as prominent features, and the remaining show GE.  
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Supplementary Fig. 3.  Two-feature GISPA identifies KMS11, MM1s and RPMI8226 selected coding 
variants with increased gene expression (GE).  Change point 1 (cpt1) gene set results that satisfy the 
profile of coding variants with increased GE are displayed by cell line.  Genes are sorted from the 
smallest to largest between-feature profile statistic. Within each data type: GE (in orange) and variant 
proportions (in blue), a stacked bar denoting the percent contribution from each cell line is displayed 
along a color gradient from darkest (KMS11) to medium (MM1s) to lightest (RPMI) shades.  Among 
the KMS11 expressed variants, FGFR3 is selected as the topmost gene showing a  missense Y373C 
mutation (COSMIC ID, COSM718) with all reads supporting the variant allele (see Supplemental 
Table 2), and increased FGFR3 GE specific to the KMS11 cell line, results that are well established 
data features of KMS11 (14).  Among all other genes identified as having expressed variants, some 
have shown to be associated with cancer.  MYEOV over-expression in MM patients is indicative of 
poorer prognosis (15). MYEOV has also been shown to be overexpressed in MM cell lines with 
t(11;14) (16) and colon cancer (17), and amplified in breast cancer (18). CAMKK2 has been shown as 
overexpressed in near-tetraploid mantel cell lymphoma (19). 
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Supplementary Fig. 4.  Two-feature GISPA identifies KMS11, MM1s and RPMI8226 selected coding 
variants with increased CpG island methylation.  Change point 1 (cpt1) gene set results that satisfy 
the profile of coding variants with increased CpG methylation are displayed by cell line.  Genes are 
sorted from the smallest to largest between-feature profile statistic. Within each data type: CpG 
methylation (in orange) and variant proportions (in blue), a stacked bar denoting the percent total 
contribution from each cell line is displayed along a color gradient from darkest (KMS11) to medium 
(MM1s) to lightest (RPMI) shades.  Among the KMS11 selected genes, PAX6 has been shown to be 
expressed in pancreatic cancer (20), and hypermethylated in breast cancer (21). TNFRS10 has been 
shown to be over-expressed in MM cell lines that over-express TP53 (22) and hypermethylated in 
neuroblastoma (23). OGDHL is hypermethylated in breast, cervix, lung, esophageal, pancreatic, and 
colon cancers (24-27). PRKCB and GJC1 were associated with hypermethylation in breast and 
colorectal cancer, respectively (28,29). IQGAP2 has been associated with under-expression in 
colorectal cancer (30) and is silenced via methylation in gastric cancer; which is also associated with 
poor prognosis (31).  
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Supplementary Fig. 5. Three Feature GISPA identifies KMS11 selected genes with decreased gene 
expression (GE), increased CpG methylation and decreased copy number (CN).   Change point 1 
(cpt1) gene set results that satisfy the profile of decreased GE with increased CpG methylation and 
decreased (heterozygous) CN by CN segment as focal (F) or large=scale (LS) according to whether 
the segment’s chromosome arm fraction was less than or greater than or equal to 2%, respectively 
(F1=focal in cpt1l; LS1=Large-Scale in cpt1) are displayed by cell line. Genes are sorted from the 
smallest to largest between-feature profile statistic.  Left: Between-cell line differences.  Within each 
data type: GE (in orange), CpG methylation beta values (in purple), and CN change (in blue), a 
stacked bar denoting the percent contribution from each cell line is displayed along a color gradient 
from darkest (KMS11) to medium (MM1s) to lightest (RPMI) shades.  Among all genes selected, as 
expected, the percent contribution to total changes in each feature is the smallest for GE, largest for 
CpG methylation and smallest for CN change within each cell line. Right: Between-feature 
Differences. The percent contribution from each feature to the profile is displayed as a stacked bar.  
Among the MM1s selected genes, the top gene, CDKN2A shows GE as the prominent feature driving 
the profile, with a combination of prominent feature changes from all other genes.  Among the RPMI 
selected genes, the top gene, PTPRD shows CN change as the prominent feature, while the 
remaining genes show a combination of feature changes, some genes with all three features as 
prominent (e.g., SCARF2, IL17RA).  
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Supplementary Fig. 6. Experimental validation that EPS15 locus allelic loss and hypermethylation is 
specific to KMS11.   A) FISH results for 1p32.3 (band containing EPS15) based on CDKN2C, located 
upstream of EPS15. 1p/1q FISH was performed according to manufacturer’s instructions using 
CDKN2C (1p32.3) probes (shown in green) and CSK1B (1q21.2) probes (shown in orange) (Cytocell 
LTD, Cambridge, UK, Cat.# LPH 039-A) (32,33) B) DNA methylation of the GISPA selected EPS15 
locus was determined by bisulfite sequencing (34). Primers were designed to avoid CpG sites and to 
recognize the bisulfite-modified sequence and span a 345bp amplicon on (Hg19) chr1:51,983,678 - 
51,984,022. Shown are 8-10 independently cloned alleles from the indicated cell line. Filled circle, 
methylated CpGs; open circles, unmethlyated CpGs. Arrow indicates the CpG site interrogated by the 
Illumina 450K platform (cg23589045). C) qPCR cDNA results of mean fold change versus control 
based on triplicate data (SD=0.02 for KMS11, SD=0.13 for MM1s, SD=0 for RPMI8226).    
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Supplementary Fig. 7. Somatic mutations with skewed allelic gene expression (GE) subnetwork 
(module) enriched in unfavorable prognostic class. (A) Detected subnetwork (p=0.10) enriched in 10  
newly diagnosed MM patients with unfavorable prognosis based on 1,000 permuted networks applied 
to the GISPA-defined, cpt1 mutations with increased GE from the 29 patients subgroup in the 
coMMpass trial.   (B)  Fisher’s exact test of association between prognostic status (unfavorable vs. 
favorable) and mutation in the subnetwork. (C) Gene mutations for the subnetwork identified as 
enriched in the 10 patients.   Genes are color-coded (red=mutated gene; grey=non-mutated gene).  
Genes with a diamond shape are seed genes used as part of the input network.  
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Supplementary Fig. 8.  Somatic mutations with skewed allelic gene expression (GE) subnetwork 
(module) enriched in the favorable prognostic group. (A) Detected subnetwork (p=0.05) enriched in 8 
newly diagnosed MM patients with unfavorable prognosis based on 1,000 permuted networks applied 
to the GISPA-defined, cpt1 mutations from the 29 patients subgroup in the coMMpass trial.   (B)  
Fisher’s exact test of association between prognostic status (unfavorable vs. favorable) and mutation 
in the subnetwork. (C) Gene mutations for the subnetwork identified as enriched in the 8 patients.   
Genes are color-coded (red=mutated gene; grey=non-mutated gene).  Genes with a diamond shape 
are seed genes used as part of the input network.   
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